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Emergent oscillations in unidirectionally coupled overdamped bistable systems
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It is well known that overdamped unforced dynamical systems do not oscillate. However, well-designed
coupling schemes, together with the appropriate choice of initial conditions, can induce oscillations when a
control parameter exceeds a threshold value. In a recent publi¢®iiys. Rev. E 68, 045102R) (2003)], we
demonstrated this behavior in a specific prototype system, a soft-potential mean-field description of the dy-
namics in a hysteretic “single-domain” ferromagnetic sample. The previous analysis of this work showed that
N (odd) unidirectionally coupled elements with cyclic boundary conditions would, in fact, oscillate when a
control parameter—in this case the coupling strength—exceeded a critical value. These oscillations are now
finding utility in the detection of very weak “target” signals, via their effect on the oscillation characteristics,
e.g., the frequency and asymmetry of the oscillation wave forms. In this paper we explore the underlying
dynamics of this system. Scaling laws that govern the oscillation frequency in the vicinity of the critical point,
as well as the zero-crossing intervals in the presence of a symmetry-breaking target dc signal, are derived,
these quantities are germane to signal detection and analysis.
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I. INTRODUCTION In two recent paper$l,3], we have demonstrated that
. . L coupling anodd numberN=3 of overdamped bistable ele-
Overdamped_ bistable dyr_1am|cs, of the generic form merf)ts E\ a ring, with unidirectional coupI[i)ng, and ensuring

~VU(x) underpin the behavior of numerous systems in thep,¢ at least one of them has an initial state that is different
physical world. The most studied example is the overdampegtom the others, can lead to oscillatory behavior when the
Duffing system: the dynamics of a particle in a bistable po-coupling strength exceeds a critical value. The characteristics
tentialU(x) =—ax*+bx". Frequently, bistable systems are alsoof the bifurcation to oscillatory behavior depend on the sys-
characterized by a “soft” potentigio be contrasted with the tem dynamics and, more importantly, the manner in which
“hard” Duffing potential which approachesw~tfar more the elements are coupled. For the case of Duffing dynamics
steeply consisting of a nonlinear addition to a parabolic with additive inter-element couplinf], the system under-
component, the latter being, of course, characteristic of lineagoes a Hopf bifurcation to oscillatory behavior; the oscilla-
dynamics. Among these systems, the dynamics of a hystetion frequency is nonzero infinitesimally past the bifurcation
etic ferromagnetic corétreated as a macroscopic single- Point, and increases as one goes deeper into the bifurcation
domain entity have recently attracted some attention, be-"egime. In[3], this property was exploited in a simple model
cause they underpin very inexpensive magnetic field sensorgf two interacting neural “columns,” and shown to lead to
operated in the time domaii2]. Absent an external forcing the appearance of certain well-characterizable frequency
term, the state poink(t) will rapidly relax to one of two COMPONents in the response.[M, we considered a system
stable attractors, for any choice of initial condition. This be-Of coupled elements having “soft™potential dynamics, char-

o ; . . acteristic of hysteretic single-domain ferromagnetic cores.
havior is, of course, universal in overdamped dynamical SYSThis work has led to exploiting the emergent oscillatory be-

tems. havior for signal detection purposes: specifically, an external
symmetry-breaking dc magnetic signal having small ampli-
tude (usually much smaller than the energy barrier height of
*Electronic address: bulsara@spawar.navy.mil a single elementcan be detected and quantified via its effect
"Electronic address: visarath@spawar.navy.mil on the oscillation frequency and asymmetry of the oscillation
*Electronic address: kho@spawar.navy.mil wave forms. For this case, the continuum limit of a discrete
SElectronic address: plonghini@netzero.net (spin system representatiorj6] dictates the nature of the
'Electronic address: palacios@euler.sdsu.edu coupling(somewhat more complicated than the additive cou-
"Electronic address: rappel@physics.ucsd.edu pling used in the Duffing systemThe bifurcation taobserv-
** Electronic address: acebron@dei.unipd.it able oscillatory behavior for this case is not Hopf; rather it
Electronic address: salvatore.baglio@diees.unict.it occurs through the confluence of heteroclinic cycles, and dis-
HElectronic address: bruno.ando@diees.unict.it plays some properties reminiscent of a saddle-node bifurca-
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tion (e.g., the oscillation frequency is zero at the critical directionally) coupled bistable overdamped Duffing oscilla-
point). We reiterate that the above-outlined behavior occursors:
only for an odd number of elemeniié= 3 (the analogy to a

frustrated spin system comes to mind, and this analogy will X = ax; = )G + (X = %),
become increasingly transparent as we proceed through our
treatment of the dynamics just past the critical ppimtith Xo = aXy — bx% + A (X — Xg), (1)

cyclic unidirectional coupling and initial conditions selected
so that at least one state point is different from the others.
In this work, we proceed as follows. In Sec. I, we present
a brief overview of emergent oscillations in coupled Duffing The overdamped Duffing system is of interest in its own
oscillators, This section is included for nonspecialists; readright; it has been used as a model to provide a qualitative
ers familiar with the mechanisms of coupling-induced oscil-yindow into systems as diverse as the dynamics of the pho-
lations might want to skip it. In Sec. IIl we reconsider the ton number density in a lasing cavity and single-neuron dy-
dynamics of unidirectionally coupled single-domain ferro- homics. As already mentioned, the dynamics in this system

magnetic cores, with a view to substantially enhancing oug.¢ qjite different from those in the coupled magnetic system
earlier result§1]. We report results of the bifurcation analy- that comprises the thrust of this paper; this is due to the

sis for a model oN fluxgate magnetometers unidirectionally yierent coupling mechanism. Our aim, in outlining the
coupled in a ring. The analysis includes an extension of the : i : .
N=3 case, which was introduced][it], to larger values ok. mechanism of the emergent oscillations for this case, is to

In particular, we conclude that if the coupling scheme iSunderline the fact that the emergent oscillatory behavior can

unidirectional among nearest neighbors then coupling—be seen in a wide class of nonlinear dynamic systems which

induced oscillations are possible only whris odd. In Sec. can have different coupling schemes anq pote_ntial energy
IV we use a simplified two-state model to get insight into thefunctlons. For both systems, much of the bifurcation analysis

coupled system dynamics. In spite of the simplifications, thepast.already been car5r|ed qg.tii]znparttotf) It using nt:jm.erlf[:r?l
two-state model captures essential features of the origindPUtines. €.g.AUTO [5], and will not be repeated in this

system that explain the nature of the oscillations and Wh}paper_. _ _ . .
they are found only whehl is odd. In Sec. V, we discuss in A fixed point exists where the right-hand sides of the sys-

more detail the behavior of the coupled system near the crititem (1) are Zero and_ I |s.tr|V|aI to f|n.d.th|s solutlon W'th.
ome algebraic manipulations. Linearizing about this point

cal point where oscillations occur. We demonstrate how on ; . :
P X1,%2,X%3)=(0,0,0, we readily obtain the eigenvalues of the

can derive the oscillation frequency together with its scalin % ; ' _— ;
behavior as a function of the coupling strength, which is€NSuing dynamics near the fixed point; they consist of one

considered to be our control parameter. This frequency, antfal €igenvalue together with a complex conjugate pair:
the zero crossings of the response, serve as useful quantifief§3/ 2 £ (V3/2)Ni. Hence, a Hopf bifurcation occurs when
of a very smalcompared to the hysteresis loop wigttar-  the real part vanishes, i.e., at the critical vaae —(3/2)\.
get” signal, assumed to be dc throughout this work. As al-The oscillation fre_quency is simply the imaginary part of the
ready mentioned, this system and its unigmeean-field  eigenvaluesep=(y3/2)\, which remains approximately con-
coupling are germane to the design of inexpensive fluxgatstant close to the critical poirithe realm of validity of the
magnetometers, operated in the time domain. In Sec. VI wénearization. Figure 1 shows the oscillatory behavior ob-
describe an experimental setup involving three coupled fluxtained via direct simulation ofl). The oscillations remain
gates. More importantly, we show that the theoretical resultgpproximately sinusoidal very close to the critical parameter;
of this paper complement the experimental work very well. in this regime, their amplitude can be found by substituting a
The results of this paper and our earlier wdi] are trial solution of the formA sin wt into the dynamics, realiz-
already being applied to the design of arrays of fluxgatdng that all the state points oscillate at the same frequency
magnetic field sensors which afford the possibilities of lowbut are offset in phase by 3, and retaining only the os-
onboard power, as well as the ability to operate in the regimeillatory terms at the fundamental frequenay One then
(just past the critical pointof maximal sensitivity if one can obtainsA=(2/\3b)ya-a, for the oscillation amplitude. As
develop a technique for “tuning” the control parameter, inone goes deeper into the oscillatory regihg adjustinga or
this case the coupling strength, in response to changes in thg, the character of the oscillations changes dramatically; the
target field in real operational scenarios. We do not addresgequency drops, the oscillations lose their sinusoidal charac-
many of these practical issues here; rather, we limit ourselveigr (corresponding to an operating regime wherein the linear-
to a description of the dynamics, especially close to the onséted system is no longer applicahleand, for sufficiently
of the bifurcation from static to oscillating behavior. In this large values of the control parameter, they can be suppressed.
regime, the dynamics are particularly sensitive to small exThis behavior, occurring in a regime where analytic calcula-
ternal signals which render the underlying potential energytions may be formidable, is not discussed further.
function (in the absence of couplingassymmetric. With the (relatively simplg example of emergent oscilla-
tory behavior in the systerfl) as a starting point, we now
Il. EMERGENT OSCILLATIONS IN COUPLED address the problem at the heart of this paper: a system of
OVERDAMPED DUFFING OSCILLATORS coupled(via a mean-field interactignhysteretic ferromag-
In this section we describe, briefly, the mechanism for thenetic cores, which underpins the dynamics of simple “flux-
generation of oscillations in a simpler system of th¢eei-  gate” magnetometer,4].

5(3: axg— b)(g"‘ )\(X3_X1).
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netometerp in (2) are assumed to be identicat, is a
temperature-dependent nonlinearity parametach element

FIG. 1. The coupled Duffing systefiN=3) has two Hopf bifur- is bistable forc>1), andUy is the energy barrier _height of
cations off the local fixed point0,0,0. One bifurcation is fon ~ any of the elements, absent the coupling. Notice that the
=2/3a and the other is foa=-3/2\. The \=(2/3)a case is un- (unidirectionaj coupling term, having strength, which is
stable and, hence, unobservable. The other case is stable. Top: tAgsumed to be equal for all three element&msgdethe non-
coupled Duffing system oscillating fa=-1.47 A=1, and the ini- linearity, a direct result of the mean-field nature of the de-
tial conditions(x;,X,,x3)=(1.78,-0.85,-1.30 Bottom: the oscil- ~ scription (in the fluxgate magnetometer, the coupling is
lations fora=-1.30. The frequency stays constant and the amplithrough the induction in the primary or “pickup” cpil
tude grows according to the 1/2 power scaling law as characteristic
of the Hopf bifurcation.

Time (iterates)

A. Bifurcation analysis

ll. COUPLED “SINGLE-DOMAIN" MAGNETIC SYSTEMS We begin by enunciating some of the results that have

The above preamble leads to a fundamental question: cdjready been presentgd i3], c.onfining_ourselves to the
N=3 case(the extension to arbitrari\ will become clear

the emergent oscillatory behavior be observed under differ- .
ent system preparations and constraints? We search for ter on, the_:reby setting up the context Of_ th? p“’_b'em at
swers using coupled magnetic “fluxgate” magnetometers a and. The bifurcation diagram for this case is given in Fig. 2.

an exampldg1]. We write the system equations for a ring of . A .simplelnumeric_all integration ai2) .(starting W“hf‘on'
N fluxgates, coupled in a directed fashion, in the following identical initial conditiong reveals oscillatory behavior for
’ ’ A<\ Where\, is a critical (or thresholgl value of the cou-

form: pling strength(as seen if1], A.<0, so that\|> |\ in the
X1 = =X +tanHc(Xy + AX, + &) ], oscillatory regime The oscillations are nonsinusoidal, with
a frequency that increases as the coupling strength decreases
Xo = =X, + tantc(X, + AXg + )], away from\.. For A> N\ (or, equivalently,]\| <|\¢|), how-

2) ever, the system quickly settles into one of its steady states,
regardless of the initial conditions; the same result ensues if
N is even, or if the coupling is bidirectional. As a side note,
we point out that the appearance of oscillations Xet A
does not violate any conservation laws; in a practical imple-

wherex(t) represents thésuitably normalizegmagnetic flux ~ mentation, some onboard pow:.g., to drive the coupling

at the output(i.e., in the secondary cogilof each unit, and circuit) is always present. The dc target sigrakhas the

e <Uy is an externally applied dc magnetic flux. It is impor- effect of skewing the potential functiofior zero coupling

tant to note that the oscillatory behavior occurs evensfor of each element. This has implications for the oscillation

=0; however, whens#0, the oscillation characteristics frequency as well as the residence timas equivalently, the

change. These changes are being exploited for signal quamero crossingsof individual elements of the connected array,

tification purposes; hence we will include the dc signal in thein their stable attractors. In previous wojR], we have ex-

dynamics(2) throughout this work. The elementise., mag-  ploited the induced asymmetry mentioned above in a design

Xy == Xy + tanHc(xy + Axq + &)1,
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FIG. 3. Bifurcati i f led-fl t t imi- . . . -
G. 3. Bifurcation diagram for a coupled-fluxgate system simi FIG. 4. Bifurcation diagram for a coupled-fluxgate system simi-

lar to that used in Fig. 2, except for larger odd valuefNofn both to that din Fia. 2  for | lueoAl
cases, only the branch of periodic solutions that emerges via a helf"’-‘r 0 that used In ™4g. <, except for farger even valuesio

o e S . _ branches of periodic solution@mpty circle$ are unstable. The
I filled- I le(a) N= N
ir?((:blgl[fo%blt(l ed-in circles is stable.(8) 5 (top) and (b) dotted curves(part of the figure-8 loop represent the unstable

steady state solutionga) N=4 (top) and(b) N=6 (bottom).

for an inexpensive, low-power, and simple to operate flux- . . . e .
gate magnetometer. coupling topologies that include bidirectional coupling

. S mong nearest neighbors, unidirectional ling for near
For larger odd values dfl, and still unidirectional cou- among nearest neighbors, unidirectional coupling for nearest

pling among nearest neighbors, the system dynamics is morQeeighbors combined with bidir_ecti(_)nal coupl@ng between
complicated than in the pl’eviOl’JS case WNi3. ForN=5 nonnearest neighbors, and unidirectional coupling for nearest

for instance, Fig. @) shows the existence of three additional neighhars combined with _unidirectipnal coupling. bgtween
branches of periodic solutions created via local Hopf bifur-£VETY other nonnearest neighbor. It is worth mentioning that

caons ne branch is created of the vl sounn ~ P10 Cotpng ecliles e exsterce o osclaton e,
=---=x5=0, while the other two emerge from the nontrivial P

steady states. All Hopf branches are unstable, so that the on ound noise, with a concomitant enhancement of sensitivity

observableoscillatory behavior still originates from the het- nS:TS]t;’V(;:I gfe SIE?T(];QItﬂ)teSdCIJ? ?enatjrgf’]orir;:ngtk?:pneerl\(/:\:gﬁ(s'tr:)g t:g?/e a
eroclinic cycle—as happens in tih\e=3 case. This also holds ging

true for larger odd values & except that adl increases the different coupling topology does not seem to increase perfor-

amplitude of the observable oscillations asymptotically ap_mance as quantified, for example, by the sensitivity of the

proaches unity, and more branches of unstable periodic Solg__scillation frequency to small changes in an applied dc target

tions bifurcate from the nonzero steady state. Figure 3 de§'gnal' These issues will be addressed in future work. In

picts these facts for two coupled systems witk5 andN summary, fror_n the applicgtion point of vie_w, the=3 case,
=7 fluxgates. Other cases are similar but are not shown fop> presented ifi] and in this paper, is the simplest, and most

i relevan realize.
brevity. elevant, case to realize

For even values o, and preserving unidirectional cou-
pling between nearest neighbors, the system also undergoes a
series of Hopf bifurcations, but all of the branches are un- In [1] we published a numerically derived expression for
stable and, hence, unobservable. Figure 4 shows representhe oscillation frequency, pending a more detailed theory. We
tive examples foN=4 andN=6. also computed the critical coupling strength past which

While more specialized coupling schemes are beyond théhe oscillations emerged, via very simple stability arguments.
purview of this paper, we have also investigated differentt was further observed that the suft)==; x;(t) could be a

B. Frequency dependence
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useful quantity for device applications; the period of the 1.0
summed response was seen tarpéN, whereT; is the period

of individual oscillations in arN-coupled ring. Finally, we
noted that the individual responsegt), while having the
same frequencyassuming that the parametersand \ are

the same throughout the dynami@3], are offset in phase by
27/N. IncreasingN leads to different frequencies for the
individual elementsk(t), with a concomitant phase differ-
ence between solutions; however, the summed response has
frequency that isndependenbf N, as long as the other pa- o X~ ¥ Y X X X
rametersc and A remain unchanged. This will become ap- ¢ 05
parent in what follows. Figure 5 shows the oscillations and S
the summed response in the systé and different values =
of the coupling strengtih and dc asymmetrizing signal g
We note that analogous phenomena have been obsg8yed <t-
in the coupled Duffing networkl).

Next we develop a more detailed description of the sys-
tem dynamics, beginning with a very simple two-state repre- |, _
sentation that reproduces some of the salient features of th ;
behavior seen in Fig. 5. This is followed by an analysis of the% 0.5
coupled system dynamics, just past the critical point. In par- 2
ticular, we derive an expression for the oscillation period in '?10.0
terms of the separatioh.—\ [recall that\,A.<O in the g
convention adopted i(2), so that the separation is a positive <051 ;
quantity forA <\.]. We also obtain expressions for the time &L
spent in each of the two stable attractors of the potential
energy functions that describe the individual element&)jn 1.0 4

in the absence of coupling; in turn, this leads us to an ex-
pression for the residence time differen&TD), a quantity J
that directly reflects the asymmetrizing sigeafor £=0, the '

potential functions are symmetric, and tl@eterministig
residence times the same.
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IV. A SIMPLE (TWO-STATE) DESCRIPTION
OF THE DYNAMICS

1 1 1
10 15 20 25x10°
Time (iterates)

o
(&)1

Just past the critical point, it is evident from Fig. 5 that
each state point spends the bulk of its time trapped in one of
the stable attractors at+1, with a negligible amount of
time lost in the “hop” to the opposite attract@potential FIG. 5. Emergent oscillatory behavior in the coupled syst&m
minimum). The exact locations of these attractors can b&or N=3. The top panel shows the oscillations near the critical
computed via the single-element dynamics, as was done ipoint. Summed response is indicated by thick black lines, and indi-
[2] for the bistable case>1. Accordingly, one needs to vidual element responses follow the gray lines in all panels. Typical
compute only the time required for a given element to evolveof the heteroclinic cycles, the amplitudes are fully grown at the start
from one of its stable attractors to the corresponding inflecef the bifurcation and the frequency is low. At the creation of the
tion point; these points are located(for X\ oscillations, the frequency is zero as predicated by the heteroclinic
=0) at +x;,= i\,,m (see[2] for more details Note that bifurcation. The parameters are set\at-0.60,e=0. The second

the fixed points(observed from the time-dependent solu-Pane! shows the oscillations for a higher coupling strength
tions) of each potential remain at approximately £1 even for_ ~0.75 ands=0. Contrasted with the top panel, the frequency in-

g . . . creases significantly. The frequency scales as a square rgbt of
finite )\ howe\{er, they cannot be as readily calculated via aands. The third panel shows the individual element oscillations for
potential function as in the uncoupled system.

. . S - .. A=-0.60,£=0.05. Notice that the sum sign@dast pane), obtained
In this section, we will simplify the original model to from the individual oscillations in the third panel, is greatly offset

various degrees. Our goal is to examine a model that can BG.een the upper statabove zerpand the lower statébelow
treated analytically but is still able to capture the essentlajzer@. Also notice the decrease in frequency when the target signal

features of the original model. We will first study the most ; is nonzero compared to the top panel. The initial conditions for all
drastic simplification possible, in which we replace the non-simulation runs aréx;,x,,xs)=(1.0,0.0,-1.0, c=3, and the time
linear hyperbolic tangent by the sign function. This modelstep size is 0.002 68. For each panel, the critical couplingt the
can be solved exactly and can shed light on some of thenset of the oscillations, may be determined from &g of [1] or,
striking dynamics we have described above. In particular, iequivalently, from Eq(18) below.
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offers insight into the fact that only a system containing an
odd number of elements leads to a time-varying, periodic
solution while a system with an even number of elements
always relaxes to a steady-state solution. We will then inves-
tigate a slightly more complicated model in which we intro-
duce a parameter and for which we can derive a bifurcation
threshold and scaling.

A. A very simple model

Departure from fixed point

I

. FIG. 6. Space-time plot of the departure from the fixed point
X ==X +sgnXi+1). () (defined here as 1J%|) for a ring of N=55 elementgsee text for

] ] ) explanation.
The N elements are considered to be placed in a ring and

sgn(x;;) has the usual meaning i.e., $gn,)=-1 for
X+1<0 and sgfx;,;)=1 for x,,,=0. Of course, this block-
type function is a gross oversimplification of the actual in-
teraction and is, strictly speaking, valid only in the limit of

Let us replace the hyperbolic tangent term by its
asymptotic values +1. We are then left with a very simple
model:

—> Circumference

Fig. 6, along with its forward neighbor. For this case, a time
trace of an individual element can be accurately described,
after a suitable shift in time, by

large A <0. Nevertheless, the advantage of the above equa- T
tions is that they are amenable to analytical treatment. The -1+2" for 0<t< N’
equations have two fixed points=+1, and we can obtain x(t) = (5)
the following explicit solution: 1= 2" ®T2N) for T <t< I

N

(4) This element will cause its neighbor to become unstable
when it crosses zero. The time needed for this,can be
easily calculated:

® 1-e ™o for x,,<0,
X; =
! -1+e ™) for x,,=0,

wherek, andk; are determined by the initial conditions.
A nonoscillating solution consists of elements in one of
the two fixed points. It is easy to show that if elemérg in

fl (i.e., th'e response amplitude is i+then 'it is stab'le.only and we findt'=In(2). Thus, the period is given byl

if elementi+1 is in —1_. ForN even, a solution consisting of =2N In(2). In practice, we find that this approximation al-
elements alternating in +1 and -1 can thus be found.NFor yeady works well foN as small as 9. This can be seen in Fig.
odd, however, this alternate arrangement is not stable: PO \where we have plotted as a function oN found in the
i=N is coupled toi=1 which is in the same fixed point. simylations of the full systerfopen circlesand as predicted
Thus, this point becomes unstable and switches to the otheyy the above expressiasolid line).

preceding neighbofin this casej=N-1), it will drive the  glements. The equation for this average(1/N)Sx;,
preceding element out of its fixed point. This process repeats

itself throughout the ring and a time-dependent solution de-
velops, which is characterized by a soliton-like wave that
propagates through the ring. This can be clearly seen in Fig.
6, where we illustrate in a space-time plot the departure from 05 |
the fixed point, defined here as fx}. The ring in Fig. 6
consists of 55 elements and the “disturbance,” i.e., the loca- .
tion where an element becomes unstable, travels backward >~ 0t
through the ring. The initial conditions were set up such that >
only one such disturbance was created. However, by choos-
ing different initial conditions, it is possible to have more |
disturbances in the ring. ! \
The periodT of the ensuing oscillation can be found ana- 1 IR ! L |
lytically for large N. This is aided by the fact that for these
values ofN the period becomes large enough for an indi-
vidual element to reach one of the fixed points. The element
will remain in this fixed point until its forward neighbor FIG. 7. Response of a single elemésnlid line) and its forward
changes sign. This can be seen in Fig. 7, where we hawugeighbor(dashed ling which are part of aN=55 ring, vs time
plotted the time trace of one of the elements in the ring of(seconds

0=-1+2", (6)

225 250 275 300 325
Time
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1000 | \e= a. (12)

The period diverges ak— \; this has already been ob-
served in our earlier workl] wherein we carried out a simu-

100 lation of the coupled systeri2).

[ V. DYNAMIC DESCRIPTION NEAR THE CRITICAL
POINT

10 ¢ : We now turn to a more detailed description of the dynam-
ics of (2), confining ourselves to the immediate neighbor-
o hood of the critical point in the oscillatory regime, i.e., when
the separatiol\.—\ is small. We note, however, that our
1 1'0 1(',0 1000 results provide a very good description of the dynangios
N particular, the scaling of the oscillation period with the cou-
pling strength and/or symmetry-breaking signalell past
FIG. 8. The period(seconds as a function of the number of the onset of the oscillations. This will become apparent later
elements for the very simple modegdircles and for the analytical  in this section. We carry out the analysis f8=3 elements;
approximation(solid line). the generalization to arbitrari will be made clear at the
end. We refer to Fig. 5, specifically the third and fourth pan-

v els which correspond to the case of small separatiot\.

X= =X~ 2 sgrixi), @) Note that Fig. 5 was generated using a specific set of initial
shows thafX=0 is a solution. FON even, this can be easily conditions; however, the analysis will make clear that the
attained by choosing the alternating sign solution. Radd, ~ dynamics evolve independently of this choice, as long as at
as discussed above, this solution is unstable and a t|méea.st one element has an initial state different from the oth-
periodic solution develops. Interestingly, the period of the®rs.
averageX, Ty, is independent of the number of elements and Many of the observations of the preceding sections are
readsTy=2 In(2). immediately apparent from Fig. 5. For small separafign
—\, it is clear that the state points spend the bulk of their
transition times reaching the inflection pointsx
=%,/(c—1)/c, after which the passage to the opposite mini-

Clearly, the system analyzed above is an oversimplificamum (at +1) is very rapid(this is particularly obvious in Fig.
tion of the full system since, even though it can capture somg) pyt differently, the combination of dc and coupled fluxes
of the salient features, it does not undergo a bifurcation as g each of the elements ¢2) causes that particular potential
parameter is varied. To introduce a bifurcation parameter, W€ skew or tilt so that a minimum and the saddle point ap-
extend the simple model of the preceding subsection 10 inproach each other, coalescing into an inflection point. At this

B. A slightly less simple model

clude interelement coupling: point, an infinitesimal further tilt causes the state point to
drop into the opposite minimum, all the time providing an
=X +sgrih)sgr(x) for [AXq| < «, ) . .
'iz{ i+ Sgrin)sgri) Wl < @ (8)  input to the nextforward-coupleglelement via the coupling,
— X *+8gMA\Xs1)  for (Ao = a, so that a solitonlike periodic disturbance travels around the

where we have introduced as a new parameter. Note that ring. One also notes that the elements evolve two at a time,
this is, in some sense, equivalent to replacing the hyperboli@/ith one element always remaining in its steady state while
tangent by the dominant pieces of its argument. As beforet,he others evolve. This behavior, which is most pronounced

we get a soliton-like wave propagating through the ring andN€&" the critical point, has already been observed in the sim-

for large N, we can again approximate the exact solution byPlified descriptions of the preceding sectiee, e.g., Fig.
7), and is reminiscent of what might be expected in a discrete

x(t)=-1+27, (9 line of magnetic spins, subject to a dc magnetic field. For an
odd number of spins, there will always be two spins that

Yg;?/\:ﬁw\gre d,,ha;ﬁ c?r]ltﬁidsglr:tieor?ngsVrrzléteerreri%vr\llr I:;Jistnzhave the same alignment and are therefore “frustrated,” with
P ) each spin trying to orient itself antiparallel to the other.

fixed point, the preceding element will become unstable. In It is also clear(Fig. 5) that the zero-crossing points

the oversimplified model of the preceding subsection, the_
condition for this event was that the element cross 0. Novﬁ_o)’ tu, tz, €tc., of the summed outpd{(Y) also correspond

however, the condition becomes to the crossing points of th_e individual elements, &.gcor-
responds to the zero crossingxgft), t, for x5(t), etc. Hence,

the problem of finding the period, of the summed output,

or the individual oscillation period§; = T (which are all the

same; the suffix refers to tHé=3 casg¢reduces to determin-

Thus, we find t"=-In(1/2-a/2\) and the (single- ing the zero-crossing timets 5(t).
element period is given byT=2N In(2\)-2N In(A—a). The From our discussion above it is evident that, during the
expression fot™ also gives us immediately the criticel\;:  dominant part of the evolution of;(t) (in Fig. 5 this corre-

a

S=-1+2t, 10
N (10
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sponds to the half-cycle starting ®t=1), the elemeni,(t) 1 1 1
r_emains_ in its steady stz?\tezl (the_: exact locations of the ~At= JO dx tanhc(x+ X — £) — X - tanhc(x + A + &) -x |’
fixed points can be readily found via simple calculus, as was
done in[2], and forc>1 are very close to +1, due to the (16)
tanh function so that the first of the equatiorf®) can be
simplified to which for smalle may be written as,

. 1

=- secR c(x+\
X,(t) = = x, + tanhc(x, + \ + &), (12) At = 2c Sf dx (x+\) 5 17)
o [tanhc(x+\) —x]

corresponding to simple “particle-in-potential” motion. For-

mally integrating this equation yields This result shows thaAt is proportional toe for small
(compared to the energy barrier heigtarget signals, a re-
0 dx, sult that has already been quantifigf] in single-fluxgate
_ , 13 : _ . . -
1 L tanhc(x + A + &) - g (13)  magnetometer experiments. In this regime, we may define a

sensitivity S via the derivativedAt/ de, yielding an expres-

] ) ) ) o ~sion that is independent &f For a practical system, this is a
wheret, is the time taker(for this choice of initial condi-  gesjraple result. It is also obvious that the RTD and the as-
tions) by the state poink,(t) to evolve from its attractor at gqciated sensitivity would be the same if we chose to com-
+1 to 0 (Fig. 5. This integral cannot be evaluated analyti- pte them via the zero crossings of any one of the solutions
cally, in general. Similarly, we see thaj(t) evolves while  y.(t), rather than the sum. Note, also, that the oscillations

x,(t)~-1 so that we have shown in Fig. 5 arsuprahreshold, an important point, since
it mitigates the effect of noise and allows a “natural” opera-
X3(t) = —Xg+tanhc(xg—\ +¢), (14)  tion with an effectively suprathreshold bias signal; by con-
trast, we point to théN=1 case[2] wherein the oscillations
whence we obtain were generated onboard tte@ngle device through an exter-
nal source with controllable amplitude and frequency. Note
0 dxg that, theoretically at least, the optimal operating point for a
1= tz‘tlzf_l fanh i — A + ) — X3 (159 single bistable device corresponds to a bias signal that is

slightly sukthreshold8]. In this regime, a combination of the

From these two integrals, we may write down the periodsignal and background noise induces hopping between the
T, of the summed output &6, =t,,+t; by formally summing stable steady states of the potential. However, practical is-
the above expressions. A little manipulation of the integra-sues, e.g., the longer observation times required in the pres-
tion limits shows immediately thaf,=2t, for £=0, as ex- ence of a nonnegligible noise background, often preclude
pected. Having obtained the above expressions, it is easy @peration in this regime.
see thatty=T,+t;,t,=2T, ts=2T,+t;,t;=3T,, etc. In par- It is easy to plot the quantities expressed via the formal
ticular, we can write down the expression for the individualintegrals(13) and(15). Before doing so, however, we derive
periods asT;=3T,, and for the phase differences betweenanalytic expressions for the peridd when the separation
individual solutions ag;—t,;=ts—t3, etc., so that the phase Ac—A\ is very small. We note that the procedure of this sec-
difference is 2r/3. tion starts to break down wheén| increases significantly past

The generalization of the above observations to arbitraryA¢, because the approximation of assuming that the ele-
N should now be clear. In this case, the individual periodsments evolve only two at a time with the rest of them re-
(and the phase offsgtdo change; however, again, only two maining fixed at thei(constant steady-state values through-
elements are simultaneously evolving at any given time, th@ut the evolution becomes increasingly tenuous, and we can
remainder staying in their steady states. Hence, the period &/ longer replace the coupling factdisside the nonlineari-
the summed output is always the same, and we obfain, ties) by constants. This is evident from the right panels of
=T,/N whereT, is now the summed output ™ (odd) ele- Fig. 5. For this situation, one must compute the period via
ments, andT; is the period of the individual oscillations for direct integration of the original coupled syste@), al-
thei=N case. The phase offset between solutions for arbithough qualitative behavior can still be very well predicted
trary N is 277/N. It is worth noting that increasinly leads to ~ using the approximate theory.
a concomitant increase in the period of the individual oscil- The integrals in Eqg(13) and(15) may be evaluated just
lations. A similar result was obtained by [ in a different  past the critical point, where the integrands display sharply
system, a globally coupled network of dc superconductingpeaked behavior. We start wiit13) and note that the de-
quantum interference devices whose individual element§ominator is sharply peaked atx;, a value that can be
could undergo saddle-node bifurcations to oscillatory behavfound by differentiation asx,=-N-g+(1/c)tant® X
ior in the absence of the coupling. where x;,=+/(c—1)/c denotes the location of the point of

Referring now to the summed outpXtt), the difference inflection. The critical coupling at which the potential func-
in zero-crossing times is a direct marker of the asymmetriztion corresponding to the, dynamics has an inflection point
ing target signak. We write this asAt=t;-t;, which, after may be obtained by settinf(X,s,\c)=0, f(x,\) being the
some manipulations, can be written as denominator in the integrand ¢13). We readily obtain
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FIG. 9. The angular frequency of the summed response calcu- 40
lated via direct numerical simulatior{solid line) and via the ap-
proximate relationship in Eq22) vs dc target signal amplitude
Parameter values ai¢=3, c=3, and\=-0.6, givinge.~ 0.1656. 30 1
1 <1
Ne=—&— Xing t+ Etanh Xinfs (18) F"+ 20 4
so thatx,,=A;—\ +Xi,s. We now expand the denominatiix)
aboutx=x,, obtaining, after some algebra,
f(x) =tanhc(x + N + &) =X = X\ = N¢ = CXin(X — X)) 2.
(19
. . . 0+ T | T T
Then, finally, we can evaluate the integral(it8), extending 0.0 05 1.0 15 20
the limits to 1 (because of the sharply peaked nature of the A
integrand: c
J“ dx T (20 FIG. 10. Periodl, (secondsof the summed signal obtained via
t, =~ =7 , . (20 numerical simulation of the dynami¢g) (solid curve and via the
— Ne ™ N+ CXng(X = Xp)? VCXinf VA — A Y @) ( 9

expression(22) (dotted curve vs bifurcation “separation’ —\..

In an analogous way, we can develop a closed form expred©opP: ¢=4,e=0. Bottom: £=0.2. The approximation agrees very
sion for the integral in(15): well with the numerically obtained period, even for langende.

foo~ Jm dx — ™ In the immediate vicinity of the critical point, i.e\.—\ is
) Ao = N+ 28 + CXing(X = Xm) VCXnVAe— N + 28 positive and small, we may approximate the period of the
21) summed oscillation by Eq22), which displays the inverse
square-root scaling behavior that one should expect. Note
where x,m=\—&—(1/c)tant! x;,s=—x, The oscillation pe- thatA.=\.(e) which leads toT,=2t; in the absence of the

riod T, of the summed response is then obtained by summingsymmetrizing signat. This behavior is captured in Fig. 10

the last two expressions to yield where we plot the period of the summed signal obtained by
direct integration of the dynamid®), vs the approximation
T. = ™ 1 + 1 . (22) (22). It is seen that22) provides a good answer everywhere,
* VC¥int \s")\c N VA-A+2¢ especially for very small separatioRg—\. It is worth noting
, ) , that we can carry out a smallexpansion for the period:
A comparison between the result obtained from this expres-
sion and from direct numerical simulations is presented in T 1 3/ & \2 .
Figs. 9 and 10. This comparison shows that the analytical T, = 2% +0(&")
; ; ; CXnf VAo — A 4 Ao = A
expression captures the dynamics well, especially near the
bifurcation threshold, but also well into the oscillating re- =T,o+ constx &2, (23

gime. This is attributable to the fact that the peaked nature of

the denominators of Eqgl3) and(15) persists well into the Wwhich is valid for e<A,—\, Wwith N=—Xn
oscillating regime, even though the peaks get broader as ong(1/c)tanti* x;, the critical coupling for the onset of oscil-
moves deeper into this regime. lations in the absence of the asymmetrizing signal.
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FIG. 11. The periodr, of the summed oscillation, reduced by o 9 )
the period fore=0, as a function ot. The results from the Taylor S i pp{tnstrumenta Integra
expansion(23) are plotted as a dashed line while the results from | —»| G g Amplifie i
the direct numerical calculation are plotted as a solid line. The A « i
curve obtained via the expressi@@?) is indistinguishable from the
solid curve at this scalé&N=3, c=3, \=-0.5. : SalleXey
! V-1 | 2 order :
The approximations to the timeég andt;, lead, directly, Quvertqr High Pass ||
to an approximate expression for the RII(=t;—t,) close Filter i
to the critical point: - = = - = = .
T 1 1 : Fluxgate| 3
At = [ [ - / ’ (24) E Bl :
VCXnfL VAc =N VAo A+ 22 IS b | y|Instrument a4 Integra
. L . . B 0 s
which also exhibits the square root behavior. Using the las{ “»{¢ g Amplifie
expression, we can obtain a@(e) approximation to the s v
RTD: ;
SalleKey
me d
At= (=N, (25 de—| 27 order
\VCXint High Pass
Filter !
so that the sensitivityAt/ de is enhanced as we get closer to - - - - — i

the critical point, where we note that decreasing the

temperature-dependent control parameteciose to unity, FIG. 12. Flow diagram for the coupled-fluxgate experiment.
can also lead to enhanced sensitivity to sreakis is readily chh fluxgate qonsists of two coils,. the sensing coll an.d the erylng
apparent in(25). It is worth pointing out that a sensitivity coil. Starting with fluxgate 1, the signal from the sensing _con first
JT,/ %, defined via the oscillation period, is actually a func- 99€S through the current-to-voltage converter. Then it passes

tion of e. This may not be desirable in practical sensorsiifough the “leaky” integrator, followed by a Sallen second-order
where one would like to develop the optimal sensor configu!It" before going through the main gain stage. Thereafter, the sig-
ration independently of the target signal. From this stand-nal goes through the _voltage-to-(?urrent converter and then it con-
point, the RTD may constitute the more reliable measureneCts to the drive coil of the adjacent fluxgafkixgate 3. The

' -_other two fluxgates are connected in the same manner.
Note also that, whea becomes comparable to the separation g

A¢—\, the expansiong23) and (25) do not agree well with  and the sensing coil. Solder is used to fuse the two sheets
simulations. This is apparent in Fig. 11, where we have plotiogether to complete the circuit for the windings. The flux-
ted T, -T,q using direct numerical simulations and the ex-gates are then coupled through electronic circuits where the

pansion(23) as a function of. (voltage readout of one fluxgate signéle., the derivative
signal of the flux detected by the sensing r@lamplified by
VI. EXPERIMENTS a voltage amplifier with a very high impedance, which also

trims out any dc in the output. Following this, the signal is

We now turn to a descriptio(Fig. 12) of the experiments passed through a “leaky” integrator to convert the derivative
carried out on a three-fluxgate setup. The printed circuikignal seen by the sensing coil back to the “flux” form so that
board(PCB) technology based fluxgat¢8] have cores made the experimental system closely conforms to the maggl
of cobalt-based Metglas 2714A material, and each is sandrhe use of a “leaky” integrator at this stage also helps to
wiched between two sheets of PCB material. The sides of thavoid the divergence caused by a small dc signal that might
PCB sheets that face away from the core material are printeldave leaked through the voltage amplifier stage. Typically
with copper wirings to form the windings for the driving coil the integrator output contains a dc component that must be
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removed before the signal is passed to the other fluxgates 1
This is accomplished by employing a Sallen-Key second-
order high-pass filter immediately after the integrator, with
the parameters tuned to work at a specific frequeftog
mean oscillating frequency of the coupled systeihe sig- =
nal then passes through an amplifier to achieve adequate gag
to drive the adjacent fluxgate. After this, the signal passes
through a voltage-to-current converi@f-I convertey in its
final step to drive the primary coil of the adjacent fluxgate.  _;
This converter also has a gain factor but it is fixed to a T T T T T s
certain value during the construction of the coupling circuits. 0 2 4 6 8 10 12x10
The gain is set at much less than unity so that one volt in the Time (iterates)
signal does not convert to one ampere in the voltage-to-
current converter stage. The setup repeats for the other tw 5
coupling connections for the remaining fluxgates and all val-
ues of the coupling circuit parameters are closely matchec’s
from one set to the other. Each stage of the coupling circuit=
also employs high speed and high precision operational am £ 0
plifiers to minimize the time delay in order to conform
closely to the model since knowledge of state variablis
known instantly in the model. -5
The oscillations observed from this setup are quite strik- T T T T T 4
ing (Fig. 13. The system readily oscillates in a traveling 0 10 20 30 40 50  60x10
pattern. Like the model, the system favors this pattern no Time (second)
matter how many times it is restarted. The frequency of os- )
cillations is about 57 Hz. Each wave is phase shifted by FIG. 13. Top: the numerical data for4, A=-1.55, and==0.
exactly 27/3 as predicted by the model. Comparison of theCurves represent the solutiorgt),i=1,2,3, of thecoupled system
oscillations from the experiment to the numerical results(z)' Bottom: the experlm_ental data from th_ree_coupled PCB fluxgate
shows good agreement. Both wave forms are qualitively"@9netometers. There is very good qualitative agreement between
similar, but the wave form from the experiment is a mirrorthe_ model and the experimental systems as indicated by the simi-
. ’ . larity of the wave forms between top and bottom panels. The ex-
image of the wave form from the model. This is probably ~ . S
due to the inversion of the winding of the coils in the con- perimental system lacks a couple of parametéhs dewc_e time
constancer and thec value) that are necessary for determining the

struction of the fluxgates. In addltlon,.smce we do not .knowexact frequency to match with the numerical result. The amplitudes
the value ofc and the time constant in the actual device

- of the experimental time series are also on a different scale because
(yve setr=1 !n the mode), we cannot Cor_reCtly compare the the voltages recorded at the output of the experiment are determined
time scales in the model and the experimental observationgy the overall gains in the circuits used to couple the
The amplitudes of the oscillations in the experiment are als¢hagnetometers.

arbitrary compared to the model because the recorded volt-
ages depend on the gains set in the coupling circuit. On thgiyia) fixed point(0,0,0 but none of them is stable. So it is
other hand, the magnetic flux in the model saturates betweegs; o the heteroclinic bifurcation to create and annihilate the
+1, but in the fluxgate devices this quantity cannot be meaggijjations with respect to the system parameter. Since there
sured directly. is only one bifurcation responsible for the oscillations, the
basin of attraction of this solution is very big. In fact it en-
VIl. CONCLUSION compasses aImc_)st the entire phas_“,e space of the system with
the sole exception of a symmetrical space formedxjy
We have illustrated the idea that overdamped systems cafix;,; y=Xi+2,0="*"Xno (the subscript O denotes the initial
be made to produce self-sustained oscillations when the cotate. Anything deviating from this space, will be attracted
pling topology is judiciously chosen. Even though our treat-toward the oscillatory solution. This is very important from
ment is largely limited to the unidirectionally coupled systemthe device stand point because not having to choose the cor-
on a ring, the idea can be extended to other coupling topolorect initial conditions for a desired solution simplifies the
gies that can be bidirectional or a combination of unidirec-implementation, since setting initial conditions is very diffi-
tional and bidirectional coupling; as briefly discussed in Seccult to do in practice. From the application point of view, the
[, these alternate coupling topologies can also lead to tha&nidirectional coupling is also simpler to implement elec-
emergence of oscillations. Of course there are endless cotronically. In contrast, for the bidirectional coupling for in-
pling configurations that one can pursue and explore, bustance, there are many oscillatory solutions that originate
there is something special for the case of a unidirectionafrom Hopf bifurcations. Each competes for its basin of at-
coupling case being discussed here. With a unidirectionallyraction. To get to the desired solution, one must choose
coupled case, the oscillations stem from a heteroclinic cycléhe correct initial conditions which is very difficult to do in
bifurcation. There are Hopf bifurcations occurring off of the practice.

Q
=
2

—

0 —
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The derived analytical expression for the oscillation peri-quencyw, have been carried out with striking result$) For
ods agrees with the numerical results from the simulation ofi coupled system that is already oscillatiftigrough a suit-
the full system dynamics. Since we are using the residencedble adjustment of the coupling coefficienss frequencyw,
times-based method to detect the asymmetry-inducing extethe inclusion of the subthreshold periodic target signal results
nal dc field, knowing the oscillation period aids in determin-in the appearance of all the “combination tones”; this is a
ing the operational location of the device with respect to thewvell-documented effect of mixing two or more frequencies
bifurcation point. It is worth pointing out that the oscillations in nonlinear devicegsee, e.g.[10] and references thergiat
in the coupled system are always suprathreskiolg¢tach of  frequenciesmw*nw; where m,n are positive integers that
the potential wells corresponding to the individual, un-satisfy certain selection rul¢depending on the system sym-
coupled, devices This is important, because it enhances themetry). The residence times statistics are no longer a simple
device’s tolerance to background noise in real applicationsnarker of the target signal and spectral techniques are nec-
For single-fluxgate magnetometers operated as level crossirggsary. The power spectral density of the response shows the
detectors, for example, one must prebias the device with gixing of frequencies very clearly, and one can determine
known time-harmonic signal that is taken to be somewhathe target signal amplitude and frequency through an analysis
suprathreshold. As one lowers the amplitude of this signalpf the spectral amplitudes at various frequencies; this has
noise effects become more important with the residence timeeen verified theoretically and also via the experimental
distributions developing tail§2]. In this case, the crossing setup of Fig. 12(2) for the case of the system set just prior
events cannot be clearly noted and longer observation timge the onset of oscillationgn the absence of any target sig-
are necessary to get good crossing statistics. Hence, a devioal9, a dc target signal does not elicit oscillatory behavior;
in which the oscillations can be spontaneously generated ariflis should be apparent from the analysis of this paper. How-
are a priori suprathreshold, is certainly advantageous; alever, a subthreshold time-periodic target signal can induce
though quantifying the coupling and the separatiqr-\  oscillatory behavior in this setup, if its amplitude and fre-
may be difficult in practice. In a forthcoming paper, we ad-quency obey certain restrictions. One finds thatshemed
dress some of these issues in the framework of a detailedutput oscillates at the target signal frequenay in this
presentation of our experimental results. case, one can use the residence times technique to quantify

We close with a brief overview of ongoing work. the response, since there is only the one frequen@yesent
Throughout this paper, the target sigmahas been taken to in the output(recall that the system is set up so that there are
be dc and subthreshold, i.e., its amplitude is much smalleno oscillations prior to the insertion of the target signal
than the deterministic switching threshold for an isolatedsubsequent publication will present theoretical and experi-
magnetometer; the switching threshold is the value dfat ~mental details of this behavior.
skews the potential energy function just enough to create a
point of inflection, so that a minuscule increasesipast this ACKNOWLEDGMENTS
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