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It is well known that overdamped unforced dynamical systems do not oscillate. However, well-designed
coupling schemes, together with the appropriate choice of initial conditions, can induce oscillations when a
control parameter exceeds a threshold value. In a recent publication[Phys. Rev. E,68, 045102(R) (2003)], we
demonstrated this behavior in a specific prototype system, a soft-potential mean-field description of the dy-
namics in a hysteretic “single-domain” ferromagnetic sample. The previous analysis of this work showed that
N (odd) unidirectionally coupled elements with cyclic boundary conditions would, in fact, oscillate when a
control parameter—in this case the coupling strength—exceeded a critical value. These oscillations are now
finding utility in the detection of very weak “target” signals, via their effect on the oscillation characteristics,
e.g., the frequency and asymmetry of the oscillation wave forms. In this paper we explore the underlying
dynamics of this system. Scaling laws that govern the oscillation frequency in the vicinity of the critical point,
as well as the zero-crossing intervals in the presence of a symmetry-breaking target dc signal, are derived;
these quantities are germane to signal detection and analysis.
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I. INTRODUCTION

Overdamped bistable dynamics, of the generic formẋ=
−¹Usxd underpin the behavior of numerous systems in the
physical world. The most studied example is the overdamped
Duffing system: the dynamics of a particle in a bistable po-
tentialUsxd=−ax2+bx4. Frequently, bistable systems are also
characterized by a “soft” potential(to be contrasted with the
“hard” Duffing potential which approaches ±` far more
steeply) consisting of a nonlinear addition to a parabolic
component, the latter being, of course, characteristic of linear
dynamics. Among these systems, the dynamics of a hyster-
etic ferromagnetic core(treated as a macroscopic single-
domain entity) have recently attracted some attention, be-
cause they underpin very inexpensive magnetic field sensors,
operated in the time domain[2]. Absent an external forcing
term, the state pointxstd will rapidly relax to one of two
stable attractors, for any choice of initial condition. This be-
havior is, of course, universal in overdamped dynamical sys-
tems.

In two recent papers[1,3], we have demonstrated that
coupling anodd numberNù3 of overdamped bistable ele-
ments in a ring, with unidirectional coupling, and ensuring
that at least one of them has an initial state that is different
from the others, can lead to oscillatory behavior when the
coupling strength exceeds a critical value. The characteristics
of the bifurcation to oscillatory behavior depend on the sys-
tem dynamics and, more importantly, the manner in which
the elements are coupled. For the case of Duffing dynamics
with additive inter-element coupling[3], the system under-
goes a Hopf bifurcation to oscillatory behavior; the oscilla-
tion frequency is nonzero infinitesimally past the bifurcation
point, and increases as one goes deeper into the bifurcation
regime. In[3], this property was exploited in a simple model
of two interacting neural “columns,” and shown to lead to
the appearance of certain well-characterizable frequency
components in the response. In[1], we considered a system
of coupled elements having “soft”-potential dynamics, char-
acteristic of hysteretic single-domain ferromagnetic cores.
This work has led to exploiting the emergent oscillatory be-
havior for signal detection purposes: specifically, an external
symmetry-breaking dc magnetic signal having small ampli-
tude(usually much smaller than the energy barrier height of
a single element) can be detected and quantified via its effect
on the oscillation frequency and asymmetry of the oscillation
wave forms. For this case, the continuum limit of a discrete
(spin system) representation[6] dictates the nature of the
coupling(somewhat more complicated than the additive cou-
pling used in the Duffing system). The bifurcation toobserv-
able oscillatory behavior for this case is not Hopf; rather it
occurs through the confluence of heteroclinic cycles, and dis-
plays some properties reminiscent of a saddle-node bifurca-
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tion (e.g., the oscillation frequency is zero at the critical
point). We reiterate that the above-outlined behavior occurs
only for an odd number of elementsNù3 (the analogy to a
frustrated spin system comes to mind, and this analogy will
become increasingly transparent as we proceed through our
treatment of the dynamics just past the critical point), with
cyclic unidirectional coupling and initial conditions selected
so that at least one state point is different from the others.

In this work, we proceed as follows. In Sec. II, we present
a brief overview of emergent oscillations in coupled Duffing
oscillators, This section is included for nonspecialists; read-
ers familiar with the mechanisms of coupling-induced oscil-
lations might want to skip it. In Sec. III we reconsider the
dynamics of unidirectionally coupled single-domain ferro-
magnetic cores, with a view to substantially enhancing our
earlier results[1]. We report results of the bifurcation analy-
sis for a model ofN fluxgate magnetometers unidirectionally
coupled in a ring. The analysis includes an extension of the
N=3 case, which was introduced in[1], to larger values ofN.
In particular, we conclude that if the coupling scheme is
unidirectional among nearest neighbors then coupling-
induced oscillations are possible only whenN is odd. In Sec.
IV we use a simplified two-state model to get insight into the
coupled system dynamics. In spite of the simplifications, the
two-state model captures essential features of the original
system that explain the nature of the oscillations and why
they are found only whenN is odd. In Sec. V, we discuss in
more detail the behavior of the coupled system near the criti-
cal point where oscillations occur. We demonstrate how one
can derive the oscillation frequency together with its scaling
behavior as a function of the coupling strength, which is
considered to be our control parameter. This frequency, and
the zero crossings of the response, serve as useful quantifiers
of a very small(compared to the hysteresis loop width) “tar-
get” signal, assumed to be dc throughout this work. As al-
ready mentioned, this system and its unique(mean-field)
coupling are germane to the design of inexpensive fluxgate
magnetometers, operated in the time domain. In Sec. VI we
describe an experimental setup involving three coupled flux-
gates. More importantly, we show that the theoretical results
of this paper complement the experimental work very well.

The results of this paper and our earlier work[1] are
already being applied to the design of arrays of fluxgate
magnetic field sensors which afford the possibilities of low
onboard power, as well as the ability to operate in the regime
(just past the critical point) of maximal sensitivity if one can
develop a technique for “tuning” the control parameter, in
this case the coupling strength, in response to changes in the
target field in real operational scenarios. We do not address
many of these practical issues here; rather, we limit ourselves
to a description of the dynamics, especially close to the onset
of the bifurcation from static to oscillating behavior. In this
regime, the dynamics are particularly sensitive to small ex-
ternal signals which render the underlying potential energy
function (in the absence of coupling) asymmetric.

II. EMERGENT OSCILLATIONS IN COUPLED
OVERDAMPED DUFFING OSCILLATORS

In this section we describe, briefly, the mechanism for the
generation of oscillations in a simpler system of three(uni-

directionally) coupled bistable overdamped Duffing oscilla-
tors:

ẋ1 = ax1 − bx1
3 + lsx1 − x2d,

ẋ2 = ax2 − bx2
3 + lsx2 − x3d, s1d

ẋ3 = ax3 − bx3
3 + lsx3 − x1d.

The overdamped Duffing system is of interest in its own
right; it has been used as a model to provide a qualitative
window into systems as diverse as the dynamics of the pho-
ton number density in a lasing cavity and single-neuron dy-
namics. As already mentioned, the dynamics in this system
are quite different from those in the coupled magnetic system
that comprises the thrust of this paper; this is due to the
different coupling mechanism. Our aim, in outlining the
mechanism of the emergent oscillations for this case, is to
underline the fact that the emergent oscillatory behavior can
be seen in a wide class of nonlinear dynamic systems which
can have different coupling schemes and potential energy
functions. For both systems, much of the bifurcation analysis
has already been carried out[1,3], part of it using numerical
routines, e.g.,AUTO [5], and will not be repeated in this
paper.

A fixed point exists where the right-hand sides of the sys-
tem (1) are zero and it is trivial to find this solution with
some algebraic manipulations. Linearizing about this point
sx1,x2,x3d=s0,0,0d, we readily obtain the eigenvalues of the
ensuing dynamics near the fixed point; they consist of one
real eigenvalue together with a complex conjugate pair:a
+s3/2dl± sÎ3/2dli. Hence, a Hopf bifurcation occurs when
the real part vanishes, i.e., at the critical valueac=−s3/2dl.
The oscillation frequency is simply the imaginary part of the
eigenvalues,v=sÎ3/2dl, which remains approximately con-
stant close to the critical point(the realm of validity of the
linearization). Figure 1 shows the oscillatory behavior ob-
tained via direct simulation of(1). The oscillations remain
approximately sinusoidal very close to the critical parameter;
in this regime, their amplitude can be found by substituting a
trial solution of the formA sin vt into the dynamics, realiz-
ing that all the state points oscillate at the same frequency
but are offset in phase by 2p /3, and retaining only the os-
cillatory terms at the fundamental frequencyv. One then
obtainsA=s2/Î3bdÎa−ac for the oscillation amplitude. As
one goes deeper into the oscillatory regime(by adjustinga or
l), the character of the oscillations changes dramatically; the
frequency drops, the oscillations lose their sinusoidal charac-
ter (corresponding to an operating regime wherein the linear-
ized system is no longer applicable), and, for sufficiently
large values of the control parameter, they can be suppressed.
This behavior, occurring in a regime where analytic calcula-
tions may be formidable, is not discussed further.

With the (relatively simple) example of emergent oscilla-
tory behavior in the system(1) as a starting point, we now
address the problem at the heart of this paper: a system of
coupled (via a mean-field interaction) hysteretic ferromag-
netic cores, which underpins the dynamics of simple “flux-
gate” magnetometers[2,4].
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III. COUPLED “SINGLE-DOMAIN” MAGNETIC SYSTEMS

The above preamble leads to a fundamental question: can
the emergent oscillatory behavior be observed under differ-
ent system preparations and constraints? We search for an-
swers using coupled magnetic “fluxgate” magnetometers as
an example[1]. We write the system equations for a ring of
N fluxgates, coupled in a directed fashion, in the following
form:

ẋ1 = − x1 + tanhfcsx1 + lx2 + «dg,

ẋ2 = − x2 + tanhfcsx2 + lx3 + «dg,
s2d

A A

ẋN = − xN + tanhfcsxN + lx1 + «dg,

wherexstd represents the(suitably normalized) magnetic flux
at the output(i.e., in the secondary coil) of each unit, and
«!U0 is an externally applied dc magnetic flux. It is impor-
tant to note that the oscillatory behavior occurs even for«
=0; however, when«Þ0, the oscillation characteristics
change. These changes are being exploited for signal quan-
tification purposes; hence we will include the dc signal in the
dynamics(2) throughout this work. The elements(i.e., mag-

netometers) in (2) are assumed to be identical,c is a
temperature-dependent nonlinearity parameter(each element
is bistable forc.1), andU0 is the energy barrier height of
any of the elements, absent the coupling. Notice that the
(unidirectional) coupling term, having strengthl, which is
assumed to be equal for all three elements, isinsidethe non-
linearity, a direct result of the mean-field nature of the de-
scription (in the fluxgate magnetometer, the coupling is
through the induction in the primary or “pickup” coil).

A. Bifurcation analysis

We begin by enunciating some of the results that have
already been presented in[1,3], confining ourselves to the
N=3 case(the extension to arbitraryN will become clear
later on), thereby setting up the context of the problem at
hand. The bifurcation diagram for this case is given in Fig. 2.

A simple numerical integration of(2) (starting withnon-
identical initial conditions) reveals oscillatory behavior for
l,lc, wherelc is a critical(or threshold) value of the cou-
pling strength(as seen in[1], lc,0, so thatulu. ulcu in the
oscillatory regime). The oscillations are nonsinusoidal, with
a frequency that increases as the coupling strength decreases
away fromlc. For l.lc (or, equivalently,ulu, ulcu), how-
ever, the system quickly settles into one of its steady states,
regardless of the initial conditions; the same result ensues if
N is even, or if the coupling is bidirectional. As a side note,
we point out that the appearance of oscillations forl,lc
does not violate any conservation laws; in a practical imple-
mentation, some onboard power(e.g., to drive the coupling
circuit) is always present. The dc target signal« has the
effect of skewing the potential function(for zero coupling)
of each element. This has implications for the oscillation
frequency as well as the residence times(or, equivalently, the
zero crossings) of individual elements of the connected array,
in their stable attractors. In previous work[2], we have ex-
ploited the induced asymmetry mentioned above in a design

FIG. 1. The coupled Duffing systemsN=3d has two Hopf bifur-
cations off the local fixed points0,0,0d. One bifurcation is forl
=2/3a and the other is fora=−3/2l. The l=s2/3da case is un-
stable and, hence, unobservable. The other case is stable. Top: the
coupled Duffing system oscillating fora=−1.47,l=1, and the ini-
tial conditionssx1,x2,x3d=s1.78,−0.85,−1.30d. Bottom: the oscil-
lations for a=−1.30. The frequency stays constant and the ampli-
tude grows according to the 1/2 power scaling law as characteristic
of the Hopf bifurcation.

FIG. 2. Bifurcation diagram for a system ofN=3 identical flux-
gates coupled in a directed ring. Filled-in squares represent local
Hopf bifurcations of unstable periodic solutions(empty circles);
empty square describes a steady-state pitchfork bifurcation point of
two branches of nontrivial unstable equilibria(dotted lines).
Filled-in circles represent stable periodic solutions created via glo-
bal bifurcations.c=3,«=0.
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for an inexpensive, low-power, and simple to operate flux-
gate magnetometer.

For larger odd values ofN, and still unidirectional cou-
pling among nearest neighbors, the system dynamics is more
complicated than in the previous case withN=3. For N=5,
for instance, Fig. 3(a) shows the existence of three additional
branches of periodic solutions created via local Hopf bifur-
cations. One branch is created off the trivial solutionx1
=¯ =x5=0, while the other two emerge from the nontrivial
steady states. All Hopf branches are unstable, so that the only
observableoscillatory behavior still originates from the het-
eroclinic cycle—as happens in theN=3 case. This also holds
true for larger odd values ofN except that asN increases the
amplitude of the observable oscillations asymptotically ap-
proaches unity, and more branches of unstable periodic solu-
tions bifurcate from the nonzero steady state. Figure 3 de-
picts these facts for two coupled systems withN=5 andN
=7 fluxgates. Other cases are similar but are not shown for
brevity.

For even values ofN, and preserving unidirectional cou-
pling between nearest neighbors, the system also undergoes a
series of Hopf bifurcations, but all of the branches are un-
stable and, hence, unobservable. Figure 4 shows representa-
tive examples forN=4 andN=6.

While more specialized coupling schemes are beyond the
purview of this paper, we have also investigated different

coupling topologies that include bidirectional coupling
among nearest neighbors, unidirectional coupling for nearest
neighbors combined with bidirectional coupling between
nonnearest neighbors, and unidirectional coupling for nearest
neighbors combined with unidirectional coupling between
every other nonnearest neighbor. It is worth mentioning that
additional coupling facilitates the existence of oscillatory be-
havior but aside from a potential enhanced tolerance to back-
ground noise, with a concomitant enhancement of sensitivity
(this will be described in an upcoming paper), increasing the
number of elements or rearranging the network to have a
different coupling topology does not seem to increase perfor-
mance as quantified, for example, by the sensitivity of the
oscillation frequency to small changes in an applied dc target
signal. These issues will be addressed in future work. In
summary, from the application point of view, theN=3 case,
as presented in[1] and in this paper, is the simplest, and most
relevant, case to realize.

B. Frequency dependence

In [1] we published a numerically derived expression for
the oscillation frequency, pending a more detailed theory. We
also computed the critical coupling strengthlc past which
the oscillations emerged, via very simple stability arguments.
It was further observed that the sumXstd=oi xistd could be a

FIG. 3. Bifurcation diagram for a coupled-fluxgate system simi-
lar to that used in Fig. 2, except for larger odd values ofN. In both
cases, only the branch of periodic solutions that emerges via a het-
eroclinic orbit (filled-in circles) is stable.(a) N=5 (top) and (b) N
=7 (bottom).

FIG. 4. Bifurcation diagram for a coupled-fluxgate system simi-
lar to that used in Fig. 2, except for larger even values ofN. All
branches of periodic solutions(empty circles) are unstable. The
dotted curves(part of the figure-8 loop) represent the unstable
steady state solutions.(a) N=4 (top) and (b) N=6 (bottom).
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useful quantity for device applications; the period of the
summed response was seen to beTi /N, whereTi is the period
of individual oscillations in anN-coupled ring. Finally, we
noted that the individual responsesxistd, while having the
same frequency[assuming that the parametersc and l are
the same throughout the dynamics(2)], are offset in phase by
2p /N. IncreasingN leads to different frequencies for the
individual elementsxistd, with a concomitant phase differ-
ence between solutions; however, the summed response has a
frequency that isindependentof N, as long as the other pa-
rametersc and l remain unchanged. This will become ap-
parent in what follows. Figure 5 shows the oscillations and
the summed response in the system(2), and different values
of the coupling strengthl and dc asymmetrizing signal«.
We note that analogous phenomena have been observed[3]
in the coupled Duffing network(1).

Next we develop a more detailed description of the sys-
tem dynamics, beginning with a very simple two-state repre-
sentation that reproduces some of the salient features of the
behavior seen in Fig. 5. This is followed by an analysis of the
coupled system dynamics, just past the critical point. In par-
ticular, we derive an expression for the oscillation period in
terms of the separationlc−l [recall that l ,lc,0 in the
convention adopted in(2), so that the separation is a positive
quantity forl,lc]. We also obtain expressions for the time
spent in each of the two stable attractors of the potential
energy functions that describe the individual elements in(2)
in the absence of coupling; in turn, this leads us to an ex-
pression for the residence time difference(RTD), a quantity
that directly reflects the asymmetrizing signal«; for «=0, the
potential functions are symmetric, and the(deterministic)
residence times the same.

IV. A SIMPLE (TWO-STATE) DESCRIPTION
OF THE DYNAMICS

Just past the critical point, it is evident from Fig. 5 that
each state point spends the bulk of its time trapped in one of
the stable attractors at<±1, with a negligible amount of
time lost in the “hop” to the opposite attractor(potential
minimum). The exact locations of these attractors can be
computed via the single-element dynamics, as was done in
[2] for the bistable casec.1. Accordingly, one needs to
compute only the time required for a given element to evolve
from one of its stable attractors to the corresponding inflec-
tion point; these points are located(for l

=0) at ±xinf = ±Îsc−1d /c (see[2] for more details). Note that
the fixed points(observed from the time-dependent solu-
tions) of each potential remain at approximately ±1 even for
finite l; however, they cannot be as readily calculated via a
potential function as in the uncoupled system.

In this section, we will simplify the original model to
various degrees. Our goal is to examine a model that can be
treated analytically but is still able to capture the essential
features of the original model. We will first study the most
drastic simplification possible, in which we replace the non-
linear hyperbolic tangent by the sign function. This model
can be solved exactly and can shed light on some of the
striking dynamics we have described above. In particular, it

FIG. 5. Emergent oscillatory behavior in the coupled system(2)
for N=3. The top panel shows the oscillations near the critical
point. Summed response is indicated by thick black lines, and indi-
vidual element responses follow the gray lines in all panels. Typical
of the heteroclinic cycles, the amplitudes are fully grown at the start
of the bifurcation and the frequency is low. At the creation of the
oscillations, the frequency is zero as predicated by the heteroclinic
bifurcation. The parameters are set atl=−0.60,«=0. The second
panel shows the oscillations for a higher coupling strengthl
=−0.75 and«=0. Contrasted with the top panel, the frequency in-
creases significantly. The frequency scales as a square root ofulu
and«. The third panel shows the individual element oscillations for
l=−0.60,«=0.05. Notice that the sum signal(last panel), obtained
from the individual oscillations in the third panel, is greatly offset
between the upper state(above zero) and the lower state(below
zero). Also notice the decrease in frequency when the target signal
« is nonzero compared to the top panel. The initial conditions for all
simulation runs aresx1,x2,x3d=s1.0,0.0,−1.0d, c=3, and the time
step size is 0.002 68. For each panel, the critical couplinglc, at the
onset of the oscillations, may be determined from Eq.(5) of [1] or,
equivalently, from Eq.(18) below.
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offers insight into the fact that only a system containing an
odd number of elements leads to a time-varying, periodic
solution while a system with an even number of elements
always relaxes to a steady-state solution. We will then inves-
tigate a slightly more complicated model in which we intro-
duce a parameter and for which we can derive a bifurcation
threshold and scaling.

A. A very simple model

Let us replace the hyperbolic tangent term by its
asymptotic values ±1. We are then left with a very simple
model:

ẋi = − xi + sgnsxi+1d. s3d

The N elements are considered to be placed in a ring and
sgnsxi+1d has the usual meaning i.e., sgnsxi+1d=−1 for
xi+1,0 and sgnsxi+1d=1 for xi+1ù0. Of course, this block-
type function is a gross oversimplification of the actual in-
teraction and is, strictly speaking, valid only in the limit of
large l,0. Nevertheless, the advantage of the above equa-
tions is that they are amenable to analytical treatment. The
equations have two fixed pointsx= ±1, and we can obtain
the following explicit solution:

xistd = H 1 − e−st+k0d for xi+1 , 0,

− 1 +e−st+k1d for xi+1 ù 0,
s4d

wherek0 andk1 are determined by the initial conditions.
A nonoscillating solution consists of elements in one of

the two fixed points. It is easy to show that if elementi is in
+1 (i.e., the response amplitude is +1), then it is stable only
if elementi +1 is in −1. ForN even, a solution consisting of
elements alternating in +1 and −1 can thus be found. ForN
odd, however, this alternate arrangement is not stable: point
i =N is coupled toi =1 which is in the same fixed point.
Thus, this point becomes unstable and switches to the other
fixed point. However, since this element is coupled to its
preceding neighbor(in this case,i =N−1), it will drive the
preceding element out of its fixed point. This process repeats
itself throughout the ring and a time-dependent solution de-
velops, which is characterized by a soliton-like wave that
propagates through the ring. This can be clearly seen in Fig.
6, where we illustrate in a space-time plot the departure from
the fixed point, defined here as 1−uxiu. The ring in Fig. 6
consists of 55 elements and the “disturbance,” i.e., the loca-
tion where an element becomes unstable, travels backward
through the ring. The initial conditions were set up such that
only one such disturbance was created. However, by choos-
ing different initial conditions, it is possible to have more
disturbances in the ring.

The periodT of the ensuing oscillation can be found ana-
lytically for large N. This is aided by the fact that for these
values ofN the period becomes large enough for an indi-
vidual element to reach one of the fixed points. The element
will remain in this fixed point until its forward neighbor
changes sign. This can be seen in Fig. 7, where we have
plotted the time trace of one of the elements in the ring of

Fig. 6, along with its forward neighbor. For this case, a time
trace of an individual element can be accurately described,
after a suitable shift in time, by

xstd =5− 1 + 2e−t for 0 ø t ,
T

2N
,

1 − 2e−st−T/2Nd for
T

2N
ø t ,

T

N
.

s5d

This element will cause its neighbor to become unstable
when it crosses zero. The time needed for this,t* , can be
easily calculated:

0 = − 1 + 2e−t* , s6d

and we find t* =lns2d. Thus, the period is given byT
=2N lns2d. In practice, we find that this approximation al-
ready works well forN as small as 9. This can be seen in Fig.
8, where we have plottedT as a function ofN found in the
simulations of the full system(open circles) and as predicted
by the above expression(solid line).

Finally, let us address the dynamics of the average of the
elements. The equation for this averageX=s1/Ndoxi,

FIG. 6. Space-time plot of the departure from the fixed point
(defined here as 1−uxiu) for a ring of N=55 elements(see text for
explanation).

FIG. 7. Response of a single element(solid line) and its forward
neighbor (dashed line), which are part of aN=55 ring, vs time
(seconds).
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Ẋ = − X − o sgnsxi+1d, s7d

shows thatX=0 is a solution. ForN even, this can be easily
attained by choosing the alternating sign solution. ForN odd,
as discussed above, this solution is unstable and a time-
periodic solution develops. Interestingly, the period of the
averageX, TX, is independent of the number of elements and
readsTX=2 lns2d.

B. A slightly less simple model

Clearly, the system analyzed above is an oversimplifica-
tion of the full system since, even though it can capture some
of the salient features, it does not undergo a bifurcation as a
parameter is varied. To introduce a bifurcation parameter, we
extend the simple model of the preceding subsection to in-
clude interelement coupling:

ẋi = H− xi + sgnsldsgnsxid for ulxi+1u , a,

− xi + sgnslxi+1d for ulxi+1u ù a,
s8d

where we have introduceda as a new parameter. Note that
this is, in some sense, equivalent to replacing the hyperbolic
tangent by the dominant pieces of its argument. As before,
we get a soliton-like wave propagating through the ring and,
for largeN, we can again approximate the exact solution by

xstd = − 1 + 2e−t, s9d

where we have shifted time and written down only the
“downward” part of the solution. As the element leaves its
fixed point, the preceding element will become unstable. In
the oversimplified model of the preceding subsection, the
condition for this event was that the element cross 0. Now,
however, the condition becomes

a

l
= − 1 + 2e−t* . s10d

Thus, we find t* =−lns1/2−a /2ld and the (single-
element) period is given byT=2N lns2ld−2N lnsl−ad. The
expression fort* also gives us immediately the criticall,lc:

lc = a. s11d

The period diverges asl→lc; this has already been ob-
served in our earlier work[1] wherein we carried out a simu-
lation of the coupled system(2).

V. DYNAMIC DESCRIPTION NEAR THE CRITICAL
POINT

We now turn to a more detailed description of the dynam-
ics of (2), confining ourselves to the immediate neighbor-
hood of the critical point in the oscillatory regime, i.e., when
the separationlc−l is small. We note, however, that our
results provide a very good description of the dynamics(in
particular, the scaling of the oscillation period with the cou-
pling strength and/or symmetry-breaking signal) well past
the onset of the oscillations. This will become apparent later
in this section. We carry out the analysis forN=3 elements;
the generalization to arbitraryN will be made clear at the
end. We refer to Fig. 5, specifically the third and fourth pan-
els which correspond to the case of small separationlc−l.
Note that Fig. 5 was generated using a specific set of initial
conditions; however, the analysis will make clear that the
dynamics evolve independently of this choice, as long as at
least one element has an initial state different from the oth-
ers.

Many of the observations of the preceding sections are
immediately apparent from Fig. 5. For small separationlc
−l, it is clear that the state points spend the bulk of their
transition times reaching the inflection points ±xinf

= ±Îsc−1d /c, after which the passage to the opposite mini-
mum (at ±1) is very rapid(this is particularly obvious in Fig.
7). Put differently, the combination of dc and coupled fluxes
in each of the elements of(2) causes that particular potential
to skew or tilt so that a minimum and the saddle point ap-
proach each other, coalescing into an inflection point. At this
point, an infinitesimal further tilt causes the state point to
drop into the opposite minimum, all the time providing an
input to the next(forward-coupled) element via the coupling,
so that a solitonlike periodic disturbance travels around the
ring. One also notes that the elements evolve two at a time,
with one element always remaining in its steady state while
the others evolve. This behavior, which is most pronounced
near the critical point, has already been observed in the sim-
plified descriptions of the preceding section(see, e.g., Fig.
7), and is reminiscent of what might be expected in a discrete
line of magnetic spins, subject to a dc magnetic field. For an
odd number of spins, there will always be two spins that
have the same alignment and are therefore “frustrated,” with
each spin trying to orient itself antiparallel to the other.

It is also clear(Fig. 5) that the zero-crossing pointst0
s=0d, t1, t2, etc., of the summed outputXstd also correspond
to the crossing points of the individual elements, e.g.,t1 cor-
responds to the zero crossing ofx1std, t2 for x3std, etc. Hence,
the problem of finding the periodT+ of the summed output,
or the individual oscillation periodsTi ;T3 (which are all the
same; the suffix refers to theN=3 case) reduces to determin-
ing the zero-crossing timest1,2std.

From our discussion above it is evident that, during the
dominant part of the evolution ofx1std (in Fig. 5 this corre-

FIG. 8. The period(seconds) as a function of the number of
elements for the very simple model(circles) and for the analytical
approximation(solid line).
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sponds to the half-cycle starting atx1=1), the elementx2std
remains in its steady statex+<1 (the exact locations of the
fixed points can be readily found via simple calculus, as was
done in [2], and for c.1 are very close to ±1, due to the
tanh function) so that the first of the equations(2) can be
simplified to

ẋ1std = − x1 + tanhcsx1 + l + «d, s12d

corresponding to simple “particle-in-potential” motion. For-
mally integrating this equation yields

t1 =E
1

0 dx1

tanhcsx1 + l + «d − x1
, s13d

where t1 is the time taken(for this choice of initial condi-
tions) by the state pointx1std to evolve from its attractor at
+1 to 0 (Fig. 5). This integral cannot be evaluated analyti-
cally, in general. Similarly, we see thatx3std evolves while
x1std<−1 so that we have

ẋ3std = − x3 + tanhcsx3 − l + «d, s14d

whence we obtain

t12 ; t2 − t1 =E
−1

0 dx3

tanhcsx3 − l + «d − x3
. s15d

From these two integrals, we may write down the period
T+ of the summed output asT+= t12+ t1 by formally summing
the above expressions. A little manipulation of the integra-
tion limits shows immediately thatT+=2t1 for «=0, as ex-
pected. Having obtained the above expressions, it is easy to
see thatt3=T++ t1,t4=2T+,t5=2T++ t1,t6=3T+, etc. In par-
ticular, we can write down the expression for the individual
periods asT3=3T+, and for the phase differences between
individual solutions ast3− t1= t5− t3, etc., so that the phase
difference is 2p /3.

The generalization of the above observations to arbitrary
N should now be clear. In this case, the individual periods
(and the phase offsets) do change; however, again, only two
elements are simultaneously evolving at any given time, the
remainder staying in their steady states. Hence, the period of
the summed output is always the same, and we obtain,T+
=Ti /N whereT+ is now the summed output ofN (odd) ele-
ments, andTi is the period of the individual oscillations for
the i =N case. The phase offset between solutions for arbi-
trary N is 2p /N. It is worth noting that increasingN leads to
a concomitant increase in the period of the individual oscil-
lations. A similar result was obtained by us[7] in a different
system, a globally coupled network of dc superconducting
quantum interference devices whose individual elements
could undergo saddle-node bifurcations to oscillatory behav-
ior in the absence of the coupling.

Referring now to the summed outputXstd, the difference
in zero-crossing times is a direct marker of the asymmetriz-
ing target signal«. We write this asDt= t1− t12 which, after
some manipulations, can be written as

Dt =E
0

1

dxF 1

tanhcsx + l − «d − x
−

1

tanhcsx + l + «d − x
G ,

s16d

which for small« may be written as,

Dt < 2c «E
0

1

dx
sech2 csx + ld

ftanhcsx + ld − xg2 . s17d

This result shows thatDt is proportional to« for small
(compared to the energy barrier height) target signals, a re-
sult that has already been quantified[2] in single-fluxgate
magnetometer experiments. In this regime, we may define a
sensitivity S via the derivative]Dt /]«, yielding an expres-
sion that is independent of«. For a practical system, this is a
desirable result. It is also obvious that the RTD and the as-
sociated sensitivity would be the same if we chose to com-
pute them via the zero crossings of any one of the solutions
xistd, rather than the sum. Note, also, that the oscillations
shown in Fig. 5 aresuprathreshold, an important point, since
it mitigates the effect of noise and allows a “natural” opera-
tion with an effectively suprathreshold bias signal; by con-
trast, we point to theN=1 case[2] wherein the oscillations
were generated onboard the(single) device through an exter-
nal source with controllable amplitude and frequency. Note
that, theoretically at least, the optimal operating point for a
single bistable device corresponds to a bias signal that is
slightly subthreshold[8]. In this regime, a combination of the
signal and background noise induces hopping between the
stable steady states of the potential. However, practical is-
sues, e.g., the longer observation times required in the pres-
ence of a nonnegligible noise background, often preclude
operation in this regime.

It is easy to plot the quantities expressed via the formal
integrals(13) and(15). Before doing so, however, we derive
analytic expressions for the periodT+ when the separation
lc−l is very small. We note that the procedure of this sec-
tion starts to break down whenulu increases significantly past
ulcu, because the approximation of assuming that the ele-
ments evolve only two at a time with the rest of them re-
maining fixed at their(constant) steady-state values through-
out the evolution becomes increasingly tenuous, and we can
no longer replace the coupling factors(inside the nonlineari-
ties) by constants. This is evident from the right panels of
Fig. 5. For this situation, one must compute the period via
direct integration of the original coupled system(5), al-
though qualitative behavior can still be very well predicted
using the approximate theory.

The integrals in Eqs.(13) and(15) may be evaluated just
past the critical point, where the integrands display sharply
peaked behavior. We start with(13) and note that the de-
nominator is sharply peaked atx=xm, a value that can be
found by differentiation asxm=−l−«+s1/cdtanh−1 xinf

where xinf =Îsc−1d /c denotes the location of the point of
inflection. The critical coupling at which the potential func-
tion corresponding to thex1 dynamics has an inflection point
may be obtained by settingfsxinf ,lcd=0, fsx,ld being the
denominator in the integrand of(13). We readily obtain
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lc = − « − xinf +
1

c
tanh−1 xinf , s18d

so thatxm=lc−l+xinf. We now expand the denominatorfsxd
aboutx=xm obtaining, after some algebra,

fsxd ; tanhcsx + l + «d − x < l − lc − cxinfsx − xmd2.

s19d

Then, finally, we can evaluate the integral in(13), extending
the limits to ±̀ (because of the sharply peaked nature of the
integrand):

t1 < E
−`

` dx

lc − l + cxinfsx − xmd2 =
p

Îcxinf
Îlc − l

. s20d

In an analogous way, we can develop a closed form expres-
sion for the integral in(15):

t12 < E
−`

` dx

lc − l + 2« + cxinfsx − xmmd2 =
p

Îcxinf
Îlc − l + 2«

,

s21d

wherexmm=l−«−s1/cdtanh−1 xinf =−xm. The oscillation pe-
riod T+ of the summed response is then obtained by summing
the last two expressions to yield

T+ =
p

Îcxinf
F 1

Îlc − l
+

1
Îlc − l + 2«

G . s22d

A comparison between the result obtained from this expres-
sion and from direct numerical simulations is presented in
Figs. 9 and 10. This comparison shows that the analytical
expression captures the dynamics well, especially near the
bifurcation threshold, but also well into the oscillating re-
gime. This is attributable to the fact that the peaked nature of
the denominators of Eqs.(13) and(15) persists well into the
oscillating regime, even though the peaks get broader as one
moves deeper into this regime.

In the immediate vicinity of the critical point, i.e.,lc−l is
positive and small, we may approximate the period of the
summed oscillation by Eq.(22), which displays the inverse
square-root scaling behavior that one should expect. Note
that lc=lcs«d which leads toT+=2t1 in the absence of the
asymmetrizing signal«. This behavior is captured in Fig. 10
where we plot the period of the summed signal obtained by
direct integration of the dynamics(2), vs the approximation
(22). It is seen that(22) provides a good answer everywhere,
especially for very small separationslc−l. It is worth noting
that we can carry out a small-« expansion for the period:

T+ <
p

cxinf

1
Îlc0 − l

F2 +
3

4
S «

lc0 − l
D2

+ Os«4dG
= T+0 + const3 «2, s23d

which is valid for «!lc−l, with lc0=−xinf
+s1/cdtanh−1 xinf the critical coupling for the onset of oscil-
lations in the absence of the asymmetrizing signal.

FIG. 9. The angular frequency of the summed response calcu-
lated via direct numerical simulations(solid line) and via the ap-
proximate relationship in Eq.(22) vs dc target signal amplitude«.
Parameter values areN=3, c=3, andl=−0.6, giving«c,0.1656.

FIG. 10. PeriodT+ (seconds) of the summed signal obtained via
numerical simulation of the dynamics(2) (solid curve) and via the
expression(22) (dotted curve) vs bifurcation “separation”l−lc.
Top: c=4,«=0. Bottom: «=0.2. The approximation agrees very
well with the numerically obtained period, even for largel and«.
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The approximations to the timest1 and t12 lead, directly,
to an approximate expression for the RTDDts=t1− t2d close
to the critical point:

Dt <
p

Îcxinf
F 1

Îlc − l
−

1
Îlc − l + 2«

G , s24d

which also exhibits the square root behavior. Using the last
expression, we can obtain anOs«d approximation to the
RTD:

Dt <
p«

Îcxinf

slc0 − ld−3/2, s25d

so that the sensitivity]Dt /]« is enhanced as we get closer to
the critical point, where we note that decreasing the
temperature-dependent control parameterc close to unity,
can also lead to enhanced sensitivity to small«, as is readily
apparent in(25). It is worth pointing out that a sensitivity
]T+/]«, defined via the oscillation period, is actually a func-
tion of «. This may not be desirable in practical sensors
where one would like to develop the optimal sensor configu-
ration independently of the target signal. From this stand-
point, the RTD may constitute the more reliable measure.
Note also that, when« becomes comparable to the separation
lc−l, the expansions(23) and (25) do not agree well with
simulations. This is apparent in Fig. 11, where we have plot-
ted T+−T+0 using direct numerical simulations and the ex-
pansion(23) as a function of«.

VI. EXPERIMENTS

We now turn to a description(Fig. 12) of the experiments
carried out on a three-fluxgate setup. The printed circuit
board(PCB) technology based fluxgates[9] have cores made
of cobalt-based Metglas 2714A material, and each is sand-
wiched between two sheets of PCB material. The sides of the
PCB sheets that face away from the core material are printed
with copper wirings to form the windings for the driving coil

and the sensing coil. Solder is used to fuse the two sheets
together to complete the circuit for the windings. The flux-
gates are then coupled through electronic circuits where the
(voltage) readout of one fluxgate signal(i.e., the derivative
signal of the flux detected by the sensing coil) is amplified by
a voltage amplifier with a very high impedance, which also
trims out any dc in the output. Following this, the signal is
passed through a “leaky” integrator to convert the derivative
signal seen by the sensing coil back to the “flux” form so that
the experimental system closely conforms to the model(2).
The use of a “leaky” integrator at this stage also helps to
avoid the divergence caused by a small dc signal that might
have leaked through the voltage amplifier stage. Typically
the integrator output contains a dc component that must be

FIG. 11. The periodT+ of the summed oscillation, reduced by
the period for«=0, as a function of«. The results from the Taylor
expansion(23) are plotted as a dashed line while the results from
the direct numerical calculation are plotted as a solid line. The
curve obtained via the expression(22) is indistinguishable from the
solid curve at this scale.N=3, c=3, l=−0.5.

FIG. 12. Flow diagram for the coupled-fluxgate experiment.
Each fluxgate consists of two coils, the sensing coil and the driving
coil. Starting with fluxgate 1, the signal from the sensing coil first
goes through the current-to-voltage converter. Then it passes
through the “leaky” integrator, followed by a Sallen second-order
filter before going through the main gain stage. Thereafter, the sig-
nal goes through the voltage-to-current converter and then it con-
nects to the drive coil of the adjacent fluxgate(fluxgate 2). The
other two fluxgates are connected in the same manner.
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removed before the signal is passed to the other fluxgates.
This is accomplished by employing a Sallen-Key second-
order high-pass filter immediately after the integrator, with
the parameters tuned to work at a specific frequency(the
mean oscillating frequency of the coupled system). The sig-
nal then passes through an amplifier to achieve adequate gain
to drive the adjacent fluxgate. After this, the signal passes
through a voltage-to-current converter(V-I converter) in its
final step to drive the primary coil of the adjacent fluxgate.
This converter also has a gain factor but it is fixed to a
certain value during the construction of the coupling circuits.
The gain is set at much less than unity so that one volt in the
signal does not convert to one ampere in the voltage-to-
current converter stage. The setup repeats for the other two
coupling connections for the remaining fluxgates and all val-
ues of the coupling circuit parameters are closely matched
from one set to the other. Each stage of the coupling circuit
also employs high speed and high precision operational am-
plifiers to minimize the time delay in order to conform
closely to the model since knowledge of state variablexi is
known instantly in the model.

The oscillations observed from this setup are quite strik-
ing (Fig. 13). The system readily oscillates in a traveling
pattern. Like the model, the system favors this pattern no
matter how many times it is restarted. The frequency of os-
cillations is about 57 Hz. Each wave is phase shifted by
exactly 2p /3 as predicted by the model. Comparison of the
oscillations from the experiment to the numerical results
shows good agreement. Both wave forms are qualitively
similar, but the wave form from the experiment is a mirror
image of the wave form from the model. This is probably
due to the inversion of the winding of the coils in the con-
struction of the fluxgates. In addition, since we do not know
the value ofc and the time constantt in the actual device
(we sett=1 in the model), we cannot correctly compare the
time scales in the model and the experimental observations.
The amplitudes of the oscillations in the experiment are also
arbitrary compared to the model because the recorded volt-
ages depend on the gains set in the coupling circuit. On the
other hand, the magnetic flux in the model saturates between
±1, but in the fluxgate devices this quantity cannot be mea-
sured directly.

VII. CONCLUSION

We have illustrated the idea that overdamped systems can
be made to produce self-sustained oscillations when the cou-
pling topology is judiciously chosen. Even though our treat-
ment is largely limited to the unidirectionally coupled system
on a ring, the idea can be extended to other coupling topolo-
gies that can be bidirectional or a combination of unidirec-
tional and bidirectional coupling; as briefly discussed in Sec.
III, these alternate coupling topologies can also lead to the
emergence of oscillations. Of course there are endless cou-
pling configurations that one can pursue and explore, but
there is something special for the case of a unidirectional
coupling case being discussed here. With a unidirectionally
coupled case, the oscillations stem from a heteroclinic cycle
bifurcation. There are Hopf bifurcations occurring off of the

trivial fixed point (0,0,0) but none of them is stable. So it is
left to the heteroclinic bifurcation to create and annihilate the
oscillations with respect to the system parameter. Since there
is only one bifurcation responsible for the oscillations, the
basin of attraction of this solution is very big. In fact it en-
compasses almost the entire phase space of the system with
the sole exception of a symmetrical space formed byxi,0
=xi+1,0=xi+2,0=¯xN,0 (the subscript 0 denotes the initial
state). Anything deviating from this space, will be attracted
toward the oscillatory solution. This is very important from
the device stand point because not having to choose the cor-
rect initial conditions for a desired solution simplifies the
implementation, since setting initial conditions is very diffi-
cult to do in practice. From the application point of view, the
unidirectional coupling is also simpler to implement elec-
tronically. In contrast, for the bidirectional coupling for in-
stance, there are many oscillatory solutions that originate
from Hopf bifurcations. Each competes for its basin of at-
traction. To get to the desired solution, one must choose
the correct initial conditions which is very difficult to do in
practice.

FIG. 13. Top: the numerical data forc=4, l=−1.55, and«=0.
Curves represent the solutionsxistd , i =1,2,3, of thecoupled system
(2). Bottom: the experimental data from three coupled PCB fluxgate
magnetometers. There is very good qualitative agreement between
the model and the experimental systems as indicated by the simi-
larity of the wave forms between top and bottom panels. The ex-
perimental system lacks a couple of parameters(the device time
constancet and thec value) that are necessary for determining the
exact frequency to match with the numerical result. The amplitudes
of the experimental time series are also on a different scale because
the voltages recorded at the output of the experiment are determined
by the overall gains in the circuits used to couple the
magnetometers.
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The derived analytical expression for the oscillation peri-
ods agrees with the numerical results from the simulation of
the full system dynamics. Since we are using the residence-
times-based method to detect the asymmetry-inducing exter-
nal dc field, knowing the oscillation period aids in determin-
ing the operational location of the device with respect to the
bifurcation point. It is worth pointing out that the oscillations
in the coupled system are always suprathreshold(in each of
the potential wells corresponding to the individual, un-
coupled, devices). This is important, because it enhances the
device’s tolerance to background noise in real applications.
For single-fluxgate magnetometers operated as level crossing
detectors, for example, one must prebias the device with a
known time-harmonic signal that is taken to be somewhat
suprathreshold. As one lowers the amplitude of this signal,
noise effects become more important with the residence time
distributions developing tails[2]. In this case, the crossing
events cannot be clearly noted and longer observation times
are necessary to get good crossing statistics. Hence, a device
in which the oscillations can be spontaneously generated and
are a priori suprathreshold, is certainly advantageous; al-
though quantifying the coupling and the separationlc−l
may be difficult in practice. In a forthcoming paper, we ad-
dress some of these issues in the framework of a detailed
presentation of our experimental results.

We close with a brief overview of ongoing work.
Throughout this paper, the target signal« has been taken to
be dc and subthreshold, i.e., its amplitude is much smaller
than the deterministic switching threshold for an isolated
magnetometer; the switching threshold is the value of« that
skews the potential energy function just enough to create a
point of inflection, so that a minuscule increase in« past this
point leads to switching to the opposite magnetization state
of the core. One may reasonablly ask about the coupled sys-
tem response to a time-periodic target signal. Calculations
and experiments using a time-sinusoidal target signal of fre-

quencyvt have been carried out with striking results:(1) For
a coupled system that is already oscillating(through a suit-
able adjustment of the coupling coefficients) at frequencyv,
the inclusion of the subthreshold periodic target signal results
in the appearance of all the “combination tones”; this is a
well-documented effect of mixing two or more frequencies
in nonlinear devices(see, e.g.,[10] and references therein) at
frequenciesmv±nvt where m,n are positive integers that
satisfy certain selection rules(depending on the system sym-
metry). The residence times statistics are no longer a simple
marker of the target signal and spectral techniques are nec-
essary. The power spectral density of the response shows the
mixing of frequencies very clearly, and one can determine
the target signal amplitude and frequency through an analysis
of the spectral amplitudes at various frequencies; this has
been verified theoretically and also via the experimental
setup of Fig. 12.(2) for the case of the system set just prior
to the onset of oscillations(in the absence of any target sig-
nals), a dc target signal does not elicit oscillatory behavior;
this should be apparent from the analysis of this paper. How-
ever, a subthreshold time-periodic target signal can induce
oscillatory behavior in this setup, if its amplitude and fre-
quency obey certain restrictions. One finds that thesummed
output oscillates at the target signal frequencyvt; in this
case, one can use the residence times technique to quantify
the response, since there is only the one frequencyvt present
in the output(recall that the system is set up so that there are
no oscillations prior to the insertion of the target signal). A
subsequent publication will present theoretical and experi-
mental details of this behavior.
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